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Issues of Atmospheric
Turbulence for ABL/ADA

(Atmospheric Decision Aid)

∂ ABL beam propagates (at small horizontal
angles) through a turbulent field neither
homogeneous, nor isotropic.

∂ Turbulence around atmospheric tropopause
has length scales with strong vertical
variability.

∂ Turbulence phenomenology characterized
by intermittent layers of weak and strong
refractive index (Cn

2)variability.

∂ Non-Kolmogorov turbulence effects over
long propagation paths.

∂ For subtropical and/or polar jet streams, we
evidence two such layers on edges of jet
stream.



∂ Correlation with mesoscale atmospheric
dynamics (WRF, MM5 codes), data from
the latter to be inputted on a coarse grid.

∂ Our goal: parametrization of vertical Cn
2

profiles (averaged over horizontal scales of
ABL beam propagation).

Payoff:

∂ Parametrization and vertical variability of
turbulence outer length scales, temperature
fluctuations and related physical quantities
required for propagation codes; "catalogue"
for a representative set of atmospheric
events around the tropopause, of relevance
to ABL/ADA.

∂ System performance modeling and
determination of performance bounds via
simulation of both average atmospheric
events and more extreme atmospheric
events of relevance to ABL/ADA.













Outline of Synoptic Situation and Turbulence
Calculation.

Case based on jet pro�le by Bedard, Canavero and Einaudi (1986) J.

Atmos. Sci. 43, 2838-2844.

20 February 1973

Sounding data from NCAR lee wave program and accompanying tur-

bulence reports from aircraft.

MM5 V3 Initialized with NCEP Reanalysis.

Run on 90km-30km nested grid with 62 vertical levels to generate dy-

namically consistent mass and momentum �elds.

Model jet and thermal �eld agree with that in Bedard et.al.
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Microscale Meteorological Modeling of    

for ABL Propagation Codes

Cn
2

Mesoscale Meteorological Codes
WRF, MM5

Meteorological Fields and
Mesoscale Resolution (Coarse Grid)

Microscale Meterological Codes
Developed at ASU (Finer Grid)

Cn
2

ABL Propagation Codes

MM5 is used to predict meteorological fields on a
coarse grid (mesoscale).  This information is used
as an input to microscale DNS codes which resolve
scales relevant for ABL propagation codes.



Numerical methods

Spectral Domain Decomposition

� Spectral method are used for spatial derivatives. The variables are

transformed to Fourier space in horizontal directions. In the verti-

cal direction, the computational domain is divided into subdomains

and a mixture of collocation and variational methods are used for

the subdomains.

� Time splitting scheme: the nonlinear and body force terms are

advanced in the �rst substep, pressure adjustment in the second

substep and viscous terms in the third substep.

� The program is parallelized by method of transposition and mpi is

used for message passing.

� The simulation is carried out on the massively parallel Bluemoun-

tain machine at Los Alamos National Laboratory and ARL MSRC.



In the vertical direction spectral domain
decomposition method is employed.

� The domain is divided into subdomains (in the vertical direction) and each sub-

domain is mapped individually to [-1,1]

� In each subdomain the variables are interpolated with Lagrangian interpolation
using Legendre-Gauss-Lobatto points.

� Collocation method is used to calculate spatial derivatives in the vertical direc-
tion.
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Subdomain Boundaries
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� resolution in vertical : 1024

� # of subdomain : 255
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≈5 Km
Tropopause

≈10 Km













Computational Domain for
Microscale Meteorological Codes

Strong nonlinear interaction between potential
vorticity dynamics and inertio-gravity waves,
topography gravity waves, gravity currents, jet
streaks

Microscale nonlinear dynamics of thermal wind
imbalance and divergent velocity potential
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Velocity projection on a vertical plane, the contours

are temperature uctuation - high resolution case.
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Local Gradient Richardson Number - high

resolution case.
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SCALES OF TURBULENCE
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 is the scale at which eddies have
enough energy to be unstable (or
overturn) in the stable buoyancy
gradient N2.



Outer Scales of Turbulence
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Vertical Pro�le of Reynolds number based on

Ld(= q3=�) scale - high resolution case.
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High Resolution Case
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Figure 1: Contours of temperature uctuation (left) and logarithmic plot of C2

N
(right).
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Figure 2: Velocities and temperature variances.







Normalized horizontal heat ux, hu0
#

0i (I) and

Vertical heat ux, hw0
#

0i (II) - high resolution case.
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Normalized length scales - high resolution case.
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Ratio of length scales - high resolution case.
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Jet Structure and Richardson Number

From Bedard, Canavero and Einaudi (1986)



Richardson number

- from high resolution simulation (left) and

observation of Bedard et. al.(right).
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Ratio of Tatarski scale over Ozmidov scale

(Lt=Lo = Ri3=4) - high resolution case.
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Ratio of Ozmidov scale over buoyancy Scale
Lo

L
b

- High resolution case
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Turbulent Froude number (Frt =
 
Lo

Le

!
2=3

)

- High resolution case
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Figure 1: (a) An example of a gradient Richardson number pro�le corresponding to Fig. 1(a),

measured by Bedard et al. (1986)(reproduced with permission from the American Meteorological

Society); (b) Gradient Richardson number pro�les at quasi-equilibrium from the numerical simula-

tions for Case 5, 6 (2562 � 512 resolution) and Case 7 (5122 � 1024 resolution).
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Conclusions and Impact
on ABL/ADA

(Atmospheric Decision Aid)
∂ Mesoscale-microscale coupling

(nested approach, outer grid from
WRF/MM5 profiles).

∂ Initialization of unbalanced
dynamics (thermal wind unbalance,
geostrophic departure, divergent
velocity potential).

∂ Non-Gaussianity (PDF and
skewness strongly z-dependent).

∂ Anisotropic, non-Kolmogorov
turbulence: diagnostic via collapse
of outer length scales.

∂ Two layers of strong refractive
turbulence on sides of jet stream.



∂ Mechanical turbulence vs. optical
turbulence: peaks of velocity
variances and temperature variance
(Cn

2) are in different vertical
locations (velocity variance peak
much closer to core of jet).

∂ Evidence separation between layers
of enhanced optical turbulence and
peaks of mechanical turbulence
(they are coupled but well
separated).

∂ The above separation depends on
the mesoscale structure of the jet.

∂ Variability and statistics of
turbulence outer scales.

∂ Shear and Tatarskii scales should be
used for parameterization of
enhanced layers of Cn

2, not the
buoyancy (Deardorff) outer scale.
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